Comparative Chloroplast Genomes of Pinaceae: Insights into the Mechanism of Diversified Genomic Organizations
نویسندگان
چکیده
Pinaceae, the largest family of conifers, has diversified organizations of chloroplast genomes (cpDNAs) with the two typical inverted repeats (IRs) highly reduced. To unravel the mechanism of this genomic diversification, we examined the cpDNA organizations from 53 species of the ten Pinaceous genera, including those of Larix decidua (122,474 bp), Picea morrisonicola (124,168 bp), and Pseudotsuga wilsoniana (122,513 bp), which were firstly elucidated. The results uncovered four distinct cpDNA forms (A-C and P) that are due to rearrangements of two ∼20 and ∼21 kb specific fragments. The C form was documented for the first time and the A form might be the most ancestral one. In addition, only the individuals of Ps. macrocarpa and Ps. wilsoniana were detected to have isomeric cpDNA forms. Three types (types 1-3) of Pinaceae-specific repeats situated nearby the rearranged fragments were found to be syntenic. We hypothesize that type 1 (949 ± 343 bp) and type 3 (608 ± 73 bp) repeats are substrates for homologous recombination (HR), whereas type 2 repeats are likely inactive for HR because of their relatively short sizes (151 ± 30 bp). Conversions among the four distinct forms may be achieved by HR and mediated by type 1 or 3 repeats, thus resulting in increased diversity of cpDNA organizations. We propose that in the Pinaceae cpDNAs, the reduced IRs have lost HR activity, then decreasing the diversity of cpDNA organizations, but the specific repeats that the evolution endowed Pinaceae complement the reduced IRs and increase the diversity of cpDNA organizations.
منابع مشابه
The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae
Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupresso...
متن کاملThe Complete Chloroplast Genome Sequence of Cephalotaxus oliveri (Cephalotaxaceae): Evolutionary Comparison of Cephalotaxus Chloroplast DNAs and Insights into the Loss of Inverted Repeat Copies in Gymnosperms
We have determined the complete chloroplast (cp) genome sequence of Cephalotaxus oliveri. The genome is 134,337 bp in length, encodes 113 genes, and lacks inverted repeat (IR) regions. Genome-wide mutational dynamics have been investigated through comparative analysis of the cp genomes of C. oliveri and C. wilsoniana. Gene order transformation analyses indicate that when distinct isomers are co...
متن کاملComparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملLoss of Different Inverted Repeat Copies from the Chloroplast Genomes of Pinaceae and Cupressophytes and Influence of Heterotachy on the Evaluation of Gymnosperm Phylogeny
The relationships among the extant five gymnosperm groups--gnetophytes, Pinaceae, non-Pinaceae conifers (cupressophytes), Ginkgo, and cycads--remain equivocal. To clarify this issue, we sequenced the chloroplast genomes (cpDNAs) from two cupressophytes, Cephalotaxus wilsoniana and Taiwania cryptomerioides, and 53 common chloroplast protein-coding genes from another three cupressophytes, Agathis...
متن کاملPhylogeny and divergence times in Pinaceae: evidence from three genomes.
In Pinaceae, the chloroplast, mitochondrial, and nuclear genomes are paternally, maternally, and biparentally inherited, respectively. Examining congruence and incongruence of gene phylogenies among the three genomes should provide insights into phylogenetic relationships within the family. Here we studied intergeneric relationships of Pinaceae using sequences of the chloroplast matK gene, the ...
متن کامل